The car sharing type: Profiling car sharing adopters in terms of sociodemographics and psychographics

Renae Sze Ming Loh
Utrecht University

Introduction

The sharing economy is oft presented as an alternative to a more traditional model of consumer ownership. In essence, a sharing economy is an economic model in which individuals/consumers can borrow, rent and utilize others’ assets. It is a relatively new development which serves as a core model from which stem a variety of business models. As the sharing economy picks up steam and becomes increasingly mainstream, a multitude of studies have focused on understanding consumers’ increasing uptake and participation in the sharing economy. On this front, studies reveal that the increasing participation in the sharing economy is generally driven by (1) social, (2) financial, (3) technological and (4) environmental factors. Firstly, social factors pertain to the human need for community and connection. The need for community in a decentralized and technology driven, lonely society that is fulfilled by the sharing economy and its promise of connecting people (Botsman & Rogers, 2011; Gilovich, Kumar & Jampol, 2015). Secondly, the financial factor relates to economic benefit. It is argued to be a rational, utility maximizing behaviour (Hamari, Sjöklint, & Ukkonen, 2015) where consumers seek greater value for lower costs (Lamberton & Rose, 2012). Thirdly, the recent technological advancements - more specifically the smartphone, greatly facilitates the sharing economy. These portable devices and the possibility of individuals or start-ups creating their own apps certainly opens doors for sharing economy services. Lastly, environmental factors such as concern regarding global warming, population growth and consequent congestion motivate individuals to seek a more sustainable lifestyle with better and more optimized utilization of resources (Botsman & Rogers, 2011; Finley, 2013). The idea that sharing economy services make use of otherwise wasteful idle capacity would thus have great appeal.

Despite the growing interest in the sharing economy, however, relatively little research has been done to look at what kinds of individuals are attracted to the sharing economy. Many studies have been able to profile participants in the sharing economy in terms of demographics. Samuel (2015) notes that while most participants are millennials, but the number of baby boomers and Generation X members engaging in the sharing economy is growing. In some ways, this trend of adoption follows the S-shaped curve posited in Rogers’ (1995) Diffusion of Innovation theory, in which consumers are categorized in terms of the role which they play in the overall diffusion process (p. 262). The ‘innovator’ or gatekeeper embraces new ideas, which she can easily adopt due to her financial situation and technological skills. The ‘early adopters’ however are the ones serving as opinion leaders and role models, being a source of advice and information for a larger social network. The groups of ‘early’ and ‘late majority’ take more time for the innovation-decision process once they have received information from their peers. Early adopters are “typically younger in age, have higher social status, more financial lucidity, advanced education and are more socially forward than late adopters” (Rogers, 2003). Late majority adopters, on the other hand, tend to react to peer pressure to acquire the new innovation. Overall, the early and late majority groups make up an estimated 70% of the population (Dütschke & Peters, 2017). ‘Laggards’ are rather conservative and backward-looking in their consumption behaviour. Their eventual adoption is typically due to the phasing out or obsoleting of the ‘conventional’ innovation. As
such they stand at the end of the diffusion process, which shows an S-shaped curve (resulting from a normal distribution of individual thresholds to adoption). In this model, diffusion is seen as the interplay of a set of heterogeneous individuals (Chatterjee & Eliashberg, 1990), differing not only in terms of their financial background, social status, knowledge but also personality traits such as an openness to change. While demographics have enjoyed a certain level of academic attention, the same attention has yet to be afforded to personality traits.

In this study, I look beyond demographics to ascertain whether specific personality factors play an important role in defining one’s attitude towards the sharing economy services. Among many other popular models of personality traits (eg: Jung, 1971), the Big 5 (McCrae & Costa, 1997) framework is the most widely used and recognized model in contemporary research today (Rossberger, 2014). The Big 5 is a hierarchical model of personality with five bipolar traits or factors - Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism (OCEAN). It is argued to represent personality at the broadest level of abstraction (Goldberg, 1993; McCrae & Costa, 1997) and captures most personality traits.

The current study will also use car sharing as a case study. It is one of the more accessible forms of green consumption, and its benefits are apparent – originating primarily from the reduction of cars on the road. Fewer cars on the road would not only reduce traffic congestion and potentially reduce the rate at which roads wear out, it also decreases air pollution from car emissions (eg: carbon dioxide, nitrogen oxides, ozone). In the long term, we will also require fewer parking lots and other parking infrastructure. These spaces and the resources that would otherwise be channelled into building them would be diverted towards other uses – green (research and development of green technology, developing parks and reserves) or otherwise (social welfare development, education). In identifying the typical users of car sharing services, we could add to current efforts to encourage green consumption.

Furthermore, automobile usage is a common case study used to illustrate and advocate for the sharing economy model over the ownership model. It serves as a good case study as how the ‘sharing’ works is more easily related, regardless of the specific business model. For example, some car sharing services (eg: Zip Car) own their own fleet of cars. Individuals can book cars locally for how ever long a duration - an hour, up to a whole weekend, or longer. Other companies (eg: Turo) do not own a fleet of vehicles, but instead, provide the service or platform through which individual car owners can rent out their cars to others. Furthermore, the personal benefits of participating in the automobile sharing economy are more self-evident. For example, the Economist (2013) reported that an individually owned car spends about 95% of its time being parked, and is thus greatly underutilized. With the sharing economy, the car is more efficiently utilized, resulting in benefits for both the car owner and consumers. The owner stands to gain a return on investment is earned by the vehicle’s owner. Joining a car club provides the convenience of owning a car without the hassle or costs of repairs, servicing or parking. Car sharing services such as car clubs provide consumers a cost-effective and flexible alternative to owning a car. These are easily comprehensible and not incredibly abstruse for the general public. That said, extant research on the adoption of car sharing services is scarce, and more work has been done regarding consumer buy-in for the sharing economy or green technology in general.

Data from the Understanding Society survey will be used to test the derived hypotheses. The Understanding Society survey covers social, economic and behavioural aspects of life in the UK. The study collects data annually, thereby recording both short and long-term changes in approximately 40,000 households.
Theory

This paper will draw upon Rogers’ (1995) theory of innovations, specifically his general profiling of a range of type of adopters. We are particularly interested in identifying early adopters. In terms of shared personality characteristics, these are people who are typically drawn to novelty and more socially forward. The early adopters group is of interested as, not only do they make up part of the majority of adopters, their earlier uptake puts them in a position to be opinion leaders and role models, potentially drawing in further adopters from their own social network. If one is interested in encouraging certain behaviours, such as the adoption of car sharing, it behoves us to pay attention to this specific group of individuals.

In favour of a more methodical approach to our study of early adopter’s personalities, we will also draw upon the Big 5 personality traits framework, which serve as an excellent foundation on which to map the characteristics of early adopters.

Big 5 personality traits and car sharing adoption

Openness

Openness to experience is typically about the extent to which the individual is curious, broad-minded and independent (Costa & McCrae, 1985). People who score higher on openness scale have an active imagination, prefer variety, and are curious about the world (Matzler et al., 2015). The open individuals are more likely to seek novelty and consequently, more likely to try out or be open to new ideas, and new products and services (Freitag & Bauer, 2016). This personality trait is most easily mapped to early adopters. Certainly, in order to be an early adopter, one should be open to new ideas, products and services. As car sharing is a relatively new phenomenon, and still in the nascent stages of consumer adoption, people who are more open are more likely to have positive attitude towards this novel service. As such, the following hypothesis is derived:

H1: The more open the respondent, the more likely s/he is an adopter of car sharing services.

Conscientiousness

Conscientiousness relates to the extent to which individuals are organized, thorough, responsible and achievement or objective driven (Norman, 1963; Uffen, Kaemmerer, & Breitner, 2013). Conscientious people tend to weigh the pros and cons, or the costs and benefits before making a decision. As early adopters tend to be role models, it is entirely plausible for them to be more likely to have weighed the pros and cons before making the decision to adopt a certain innovation. On this front, given that car sharing, among other benefits, saves consumers money, stands to earn car owners extra cash, and puts the same car to more efficient usage, the following hypothesis is derived:

H2: The more conscientious the respondent, the more likely s/he is an adopter of car sharing services.

Extraversion

Extraversion is the extent to which individuals derive positive emotions through engaging with the external world. Extroverts tend to be sociable, gregarious, assertive,
energetic and active individuals (Eysenck, 1947; Smillie, Wilt, Revelle, & Cooper, 2012). One of the defining characteristics of extroverts is that they tend to thrive on social situations (Smillie et al., 2012). This arguably mirrors the social forwardness of early adopters posited by Rogers (2003). As car sharing services basically entail social interaction and trust between strangers, it is less likely to cause distress or anxiety for extroverts (Freitag & Bauer, 2016; Roy, 2016). They would thus be more inclined to adopt. As such:

H3: The more extroverted the respondent, the more likely s/he is an adopter of car sharing services.

Agreeableness

Agreeableness relates to the extent to which individuals value social harmony, cooperation, decency and honesty. People who score high on agreeableness are generally courteous, trusting, altruistic and more forgiving. The nature of agreeable people may make them more accepting of new technologies, especially earlier on, while services are still ironing out the kinks and fixing bugs (Devaraj, Easley & Crant, 2008). Furthermore, agreeableness could be related to environmentalism due to their greater propensity for empathy (Hirsh & Dolderman, 2007). The environmental benefits of using car sharing would thus appeal to more agreeable people. Thus:

H4: The more agreeable the respondent, the more likely s/he is an adopter of car sharing services.

Neuroticism

Neuroticism is the extent to which the individual tends to experience negative feelings and overreact. Neurotic people tend to be anxious, worried, nervous and insecure (Eysenck, 1947). They are thus more likely to distrust people - what more of strangers. They are also more likely to regard new technologies and services as threatening and stressful thereby reducing their use of Internet (Devaraj et al., 2008; Tuten & Bosnjak, 2001). In addition, neuroticism was also found to be negatively correlated with the perceived usefulness and behavioral control (Uffen et al., 2013), which in return reduced people's intention to adopt new technologies. As such:

H5: The more neurotic the respondent, the less likely s/he is an adopter of car sharing services.

Social characteristics of early adopters

Previous research about the early adopters of shared-mobility services (e.g. carsharing, bikesharing and on-demand ride services) showed that the early adopters tend to be more highly-educated young adults who live in urban areas (Rayle et al., 2014, Circella et al., 2016). Indeed, sociodemographics may be the main determinant of shared-mobility usage (Metz, 2013; Preito, Baltas & Stan, 2017), especially when one considers how sociodemographic variables affect mobility patterns and modes of transportation.

Regarding car sharing specifically, Le Vine et al. (2014) summarized the socio-economic profiles of car sharing users as urban, well-educated, moderate/upper income, younger adults that live alone or in small households without children. And indeed some studies do find that car sharing members tend to be well-educated and relatively young individuals (Burkhardt & Millard-Ball, 2006; Efthymiou et al., 2013). In a study of users of on-demand ride services, Rayle et al. (2014) found that
the majority of Uber and Lyft users are young female adults who have a rather high level of education. Correia and Viegas (2011) found that younger people with a lower income were more willing to carpool. And Shaheen and Schwartz (2004) found that car sharing users were often students and belonged to low income households. However, there are others who found slightly different results. For example, Kawgan-Kagan (2015) found that early adopters of car sharing were much like those of electric vehicles (as found in studies like Peters & Dütschke, 2014). They were typically middle-aged, highly educated working men with a high income. While there exists contention regarding the typical gender and income of car sharing users, they are still more widely profiled as young well-educated individuals living in urban environments. And indeed, these trends are not at all surprising.

Younger people are generally more familiar with information communication technology (ICT) (Livingstone, 2004). They are thus more likely to be comfortable in using ICT and ICT-facilitated services such as car sharing which are largely app-based (McDonald, 2015). Furthermore, younger people - or the millennials more specifically, own fewer cars, drive less and eschew motorized means of transportation in favour of more environmentally friendly and cost effective non-motorized options (Blumenberg et al., 2016, Kuhnimhof et al., 2012). Moreover, they have different travel behaviours and even residential location compared to people from older cohorts (Frändberg & Vilhelmson, 2011). While older cohorts are more likely to have moved out of the city in favour of the suburbs, younger cohorts are yet to have the same financial affluence to do so in part due to the recessionary economic conditions which tended to hit early-career millennials harder than older cohorts. Additionally, millennials tend to live in central urban areas which are more densely populated (Glaeser, Kolkio & Saiz, 2001). This could influence their likelihood of using shared-mobility services as there would be more fellow car sharing members - thus making it easier to find a carpool or ‘rent’ a car.

While the jury may still be out regarding the exact profile of car sharing users, what is apparent is the influence of sociodemographic factors such as age, sex, education, income and residential area. They should thus be considered as important moderators of early adoption of car sharing.

Methodology

Data

Data from the Understanding Society survey was used to test the derived hypotheses. The study collects data annually, thereby recording both short and long term changes in approximately 40,000 households. Data is collected from each household via an annual online survey or through visit from an interviewer. Not only does the survey cover social, economic and behavioural aspects of life in the UK, it captures people of a wide range of age. There are separate questionnaires designed for children aged 10-15 and adults aged 16 and above.

While the survey is designed to be longitudinal, only some sets of questions are asked every year, while others were only measured in particular waves. This is greatly understandable. To seek to measure all sets of variables in every wave would come not only at a huge logistical cost, but it would cause responder fatigue which has negative implications for the data collected. With regards to the variables relevant to the current study, variables relating to car sharing behaviour and psychographics were measured only in 2016 and 2013 respectively. As
such, we do not have the most current psychographic measurements, and they were not
captured within the same wave as the demographic and car sharing behaviour measurements
used. However, this should not pose as a great limitation as personality is unlikely to change
dramatically over the course of three years. The demographic variables were measured in at
every wave, but this study only uses the data measured in 2016. This not only provides the
most current demographic information about the respondents, but more importantly, car
sharing behaviours were also captured within the same year.

Data from both 3 and 6 were merged. The resulting dataset contained 34,291 observations.

Operationalization

Car Sharing
The survey distinguished between membership in formal car sharing programmes and
car clubs. As the current study looks broadly at participation in car sharing services, a
dummy variable (carshare) was created to capture membership in either service.
Furthermore, as car sharing is still relatively new, adoption tends to be rather low. By
merging samples from formal car sharing programmes and car clubs, we are able to
expand our sample size, which in turn affords richer analyses.

Big 5 Personality Traits
The respondents’ personality traits were measured through five sets of three
questions. They were measured on a Likert scale of 1 (does not apply to me at all) to 7
(applies to me perfectly). The respective sets of questions were then aggregated into
measures of each trait. These derived measures were utilized in the present study.

Demographics
The variables sex and residential area were recoded into dummy variables *male* and
urban respectively for ease of interpretation. Age was used as is from the survey
dataset. As previous research have generally identified adopters of car sharing
services as well-educated, a dummy variable *highedu* was also created to distinguish
between those who obtained higher education qualifications and those who did not.
As income tends not to be normally distributed, a new variable capturing the
logarithm of income was generated. The logarithm of income tends to be more
normally distributed, thus satisfying the t-test assumption of normality of data
distribution. The logarithm of income was used in the statistical analysis, but income
is reported in the descriptive statistics for ease of understanding.

Analysis
A series of independent samples t-tests were first run. Following which, statistically
significant variables were further tested through the use of a logistic regression. All statistical
analyses were done in Stata (version 14).

Descriptive Statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Car sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>313 (0.91%)</td>
</tr>
</tbody>
</table>
With just under 1% of the population adopting car sharing services, we are still very much in the ‘early adopter’ phase as posited in the adoption curve in Rogers’s diffusions of innovations model.

Hypothesis Testing and Results

<table>
<thead>
<tr>
<th>Variable of interest</th>
<th>Hypothesis</th>
<th>Relevant literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openness</td>
<td>H1: The more open the respondent, the more likely s/he is an adopter of car sharing services.</td>
<td>Freitag & Bauer, 2016 Matzler et al., 2015</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>H2: The more conscientious the respondent, the more likely s/he is an adopter of car sharing services.</td>
<td>Norman, 1963 Uffen et al., 2013</td>
</tr>
<tr>
<td>Extraversion</td>
<td>H3: The more extroverted the respondent, the more likely s/he is an adopter of car sharing services.</td>
<td>Eysenck, 1947 Smillie et al., 2012</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>H4: The more agreeable the respondent, the more likely s/he is an adopter of car sharing services.</td>
<td>Devaraj et al. 2008 Hirsh & Dolderman, 2007</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>H5: The more neurotic the respondent, the less likely s/he is an adopter of car sharing services.</td>
<td>Devaraj et al., 2008 Tuten & Bosnjak, 2001 Uffen et al., 2013</td>
</tr>
</tbody>
</table>

To test the derived hypotheses, a series of independent t-tests were run to compare the means of each personality trait variable between those who engaged in car sharing services those who did not.

Table 1: t-test results for psychographic variables
Hypotheses

H1: The more open the respondent, the more likely s/he is an adopter of car sharing services.

-3.4724 \(t \)-value, \(df = 29238 \), \(p \)-value = 0.0005 *

H2: The more conscientious the respondent, the more likely s/he is an adopter of car sharing services.

1.1302 \(t \)-value, \(df = 29259 \), \(p \)-value = 0.2584

H3: The more extroverted the respondent, the more likely s/he is an adopter of car sharing services.

-2.2770 \(t \)-value, \(df = 29263 \), \(p \)-value = 0.0228 *

H4: The more agreeable the respondent, the more likely s/he is an adopter of car sharing services.

-0.9139 \(t \)-value, \(df = 29262 \), \(p \)-value = 0.3608

H5: The more neurotic the respondent, the less likely s/he is an adopter of car sharing services.

0.5079 \(t \)-value, \(df = 29262 \), \(p \)-value = 0.6115

* : significant at the 0.05 level

The \(t \)-test results indicate that the difference of means in conscientiousness (H2), agreeableness (H4) and neuroticism (H5) respectively between adopters and non-adopters of car sharing and females are not statistically significantly different from 0. However, the difference of means in openness (H1) and extraversion (H3) between adopters and non-adopters of car sharing and females is statistically significantly different from 0.

The sociodemographic variables were also examined using a series of \(t \)-tests.

Table 2: \(t \)-test results for sociodemographic control variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>(t)-value</th>
<th>(df)</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>-3.2713</td>
<td>34289</td>
<td>0.0011 *</td>
</tr>
<tr>
<td>Age</td>
<td>4.1328</td>
<td>34289</td>
<td>0.0000 *</td>
</tr>
<tr>
<td>Higher education</td>
<td>-3.4620</td>
<td>34196</td>
<td>0.0005 *</td>
</tr>
<tr>
<td>Urban</td>
<td>-0.7337</td>
<td>34282</td>
<td>0.4631</td>
</tr>
<tr>
<td>Income</td>
<td>-4.4977</td>
<td>33338</td>
<td>0.0000 *</td>
</tr>
</tbody>
</table>

* : significant at the 0.05 level

The \(t \)-test results indicate that the difference of means in terms of gender, age, higher education and income were statistically significantly different from 0.

Subsequently, as carshare is a binary dependent variable, logistic regressions were performed. A first model consisting only of control variables was first run, followed by a model which included the identified psychographic variables. The results are presented in Table 3 below.

Table 3: Logistic regression results
Based on the above results, we find that early adopters of car sharing services tend to be younger males with a high degree of openness. They are also typically earning more than those who do not use car sharing services.

Although higher education was not statistically significant in Model 1, the p-value is not too far off from the convention cut off point of 0.05. This may be due to multicollinearity with age. Arguably, the older you get, the more likely you are to obtain higher education qualifications. It could also be due to a multicollinearity with income. To check this, we checked the correlation between age and higher education. Indeed, higher education and age were correlated (Pearson’s correlation = -0.1198, p<0.0001). We also checked the correlation between income and higher education (Pearson’s correlation = 0.2265, p<0.0001). These correlation coefficients are indeed statistically significant, thus indicating the potential effect of these multicollinearities. However, this is beyond the scope of the current study. It is more important to note that with the addition of the psychographic variables, higher education becomes more clearly not statistically significant.

Additionally, the effect of extraversion is not statistically significant. This may yet again be due to multicollinearity. Perhaps someone who is extraverted is also highly likely to be open. We checked the correlation between extraversion and openness and found that they are indeed correlated (Pearson’s correlation = 0.2503, p<0.0001).

Our results also indicate that the added consideration for psychographic variables does account for more of early adoption behaviour than simply considering key demographic variables. In the first model (Model 1), only demographic variables were included. The model accounted for 1.56% of variances in car sharing adoption. The psychographic variables were added in the subsequent model (Model 2). This increased the degree to which the model accounted for variances in car sharing adoption to 2.04%.

Discussion

The empirical results of this study indicate that early adopters of car sharing services tend to be younger males with a high degree of openness. They are also typically earning more than those who do not use car sharing services. Our results generally fall in the middle ground vis-à-vis earlier research on early adoption. As with earlier studies, we found that they are
younger males, but unlike most studies, they are not of low income. Our results largely conforms to what Rogers posited about early adopters. Not only did we find that they are drawn to novelty, as posited by Rogers (2003), but our findings are rather in line with what Rogers (2003) detailed - early adopters are “typically younger in age, have higher social status, more financial lucidity, advanced education and are more socially forward than late adopters”. However, beyond how our results fit amongst the larger body of theoretical and empirical research, our results have further implications and point to potential areas for further research which deserve some elaboration.

In line with earlier studies, this study found that early adopters tend to be younger individuals. This is perhaps owing to how car sharing services are largely mobile application based. As younger people more familiar with such technology, they are less deterred from trying it out. Indeed, it is not largely incompatible with their already mobile application saturated life. As compatibility part of the set of innovation characteristics posited by Rogers (1995), a rather large body of research already exists regarding compatibility and adoption behaviour. However, future studies can and perhaps should take technological know-how or tech-savviness into account when measuring compatibility. Meanwhile, it is apparent that the “older” generation remains largely untapped. Policy makers could seek to find out how to better educate the older generation and develop their technological know-how to a point where they feel more confident to try out such app-based services.

Our results also indicated that males are 30.8% more likely to be car sharing users. This may well be due to a perception of safety, given that car sharing services entail interaction with strangers. Furthermore, car sharing services are not as regulated as conventional transportation services such as taxis/cabs. This could leave people with a fair amount of uncertainty. Future efforts to encourage the adoption of car sharing should seek to address this, not just for potential female car sharing adopters, but one could imagine this to be an important consideration for older individuals and late majority adopters. Policy makers could explore implementing better regulations to ensure customer safety and foster greater consumer confidence in car sharing.

In terms of psychographic predictors, the results indicate that openness is key to early adoption. This is in line with previous studies that have pointed out early adopters’ need for novelty. A further implication of this result is that psychographics do have a place in adoption research. It must first be said that this study, and the resulting models, did not encompass all relevant sociodemographic variables, much less all the relevant predictive variables. Yet this was not the point of the study. One of the key aims of the current study was to ascertain if psychographics played a part. Indeed our results indicate that even among established sociodemographic predictors, psychographics still had some predictive capability. Going forward, researchers should certainly keep psychographics in mind. While we found that openness mattered more when it comes to early adopters, the same cannot be said for the other categories of adopters (innovators, late majority and laggards). As the adoption of car sharing or any other low carbon emission practices grow, it would be interesting to ascertain if not so early and late adopters share any psychographic similarities. It could help us understand how to appeal to people in hopes of encouraging them to adopt certain behaviours. Efforts for further academic inquiry along these lines would be bolstered by the use of longitudinal data. With longitudinal data, we would be able to ascertain the rate of adoption, the likelihood of conversion and tie that to any changes in sociodemographic or psychographic variables.
With regard to income, while we did find indication that early adopters of car sharing earn more than non-adopters, the implications are not as straightforward. These individuals with higher incomes may hold inner-city jobs that tend to pay more. These jobs are unlikely to require employees to travel multiple times a day, thus leading to a general preference for public transport with no need for car ownership. If and when they do need a car – say to run errands or attend multiple meetings, car sharing presents itself as a viable and effective solution. This is speculation at best, based on our results, however, it does point to a potential area for further research. As our jobs take up a significant part of our time, and have considerable influence on our lifestyle, it is certainly worthwhile to explore how lifestyles influence shared mobility adoption behaviour.

As a whole, this study and its accompanying results not only indicate that psychographics have a place in innovation adoption research, but that there is still much research to be done. Indeed, the future of car sharing is still rather unknown, at least in the UK. But there is hope yet, given that we are currently at the point where only 1% of the surveyed population has adopted car sharing. Optimistically, there is room for more people to buy into the practice of car sharing. And if early adopters are indeed more socially forward and do tend to be opinion leaders, the initial 1% will certainly influence further adoption. Moreover, the future is rather bright – not just for car sharing but perhaps for environmentalism and green consumption too, as most of our car sharing adopters are younger individuals. Broadly speaking, if early adopters of low carbon emissions practices are drawn to novelty, and do not shun from new ideas, then our efforts towards lowering carbon emissions at the individual level – which at times could call for rather radical changes in lifestyle, would certainly stand a decent chance.

And while this study focused on one specific area of the sharing economy, it does speak to how people are more likely to participate in the sharing economy if it is compatible with their standard of living, in terms of having the financial means to support experimenting with the sharing economy, and their existing lifestyles, such as a pre-existing affinity with smartphones and similar technology. Rogers’ (1995) Diffusion of Innovation theory and framework will most likely prove useful in efforts to understand the adoption of the wider sharing economy and its associated practices.

Conclusion

Using the Understanding Society survey data, this study sought to identify early adopters of car sharing services in terms of sociodemographic and psychographic factors. With just under 1% of the population adopting car sharing, it is clear that car sharing adoption is still in its early adoption stage. A series of independent samples t-tests were first run. Following which, statistically significant variables were further tested through the use of a logistic regression. The results indicate that early adopters of car sharing services tend to be younger males with a high degree of openness, and are typically earning more than those who do not use car sharing services. To be sure, psychographics still has a role to play, even among established sociodemographic predictors. Researchers interested in tracking and understanding car sharing adoption and its growth should keep certainly keep psychographics in mind. Further research can also be done with regard to how lifestyle influences car sharing adoption. These efforts stand to gain from the use of longitudinal data. Indeed, where car sharing has room to grow, so does the academic research accompanying it.

It is clear to see that there is much academic work to be done, but the same is true for policy making and efforts to encourage car sharing in the UK. Car sharing and perhaps other low carbon emissions or green consumption practices are gaining ground in the UK. The switch is
possible, and people are changing their behaviour, albeit slowly. To further encourage this change, we cannot remain idle in our efforts, nor should we use force. It will certainly not be as straightforward as encouraging the switch from conventional to electric vehicles — through the use of tax incentives, better infrastructure for more convenient charging of electric car batteries, and mandating better warranties for electric vehicle batteries. To encourage car sharing, policy makers could look at developing greater confidence in car sharing.

References

Botsman, R., & Rogers, R. (2011). What’s mine is yours: how collaborative consumption is changing the way we live.

